IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition

Xiaoping Wu (伍小平), Chi Zhan (展晨), Yu-Kun Lai (来煜坤), Ming-Ming Cheng (程明明), Jufeng Yang (杨巨峰)

1 College of Computer Science, Nankai University, Tianjin, China
2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK

Email: xpwu95@163.com Websites: xiaopingwu.cn; cv.nankai.edu.cn

Introduction

- Highlights
 - The largest public dataset for insect pest recognition. This dataset contains 102 insect pests, including 75,222 images with category labels and 18,976 images with bounding boxes.
 - Extensive experiments on the proposed dataset.

- Motivation
 - Insect pest is one of the main factors affecting agricultural product yield. Accurate recognition of insect pests facilitates timely preventive measures to avoid economic losses.
 - Existing small-scale insect pest datasets cannot well satisfy the requirement of deep technology.

- Data Collection & Annotations
 - (1) Taxonomic system establishment
 - (2) Image collection
 - (3) Preliminary data filtering
 - (4) Professional data annotation

- Comparison to Previous Datasets
 - More samples
 - More classes
 - In the wild
 - Publicly available

IP102 Dataset

- Hierarchical Taxonomy System
 - Each insect pest is assigned an upper-level class based on the crop that the insect pest class mainly damages.
 - FC: Field crops; EC: Economic crops

- Statistical Information

Benchmark Experiments

- Classification Task
 - ① Classification performance of handcrafted and deep features

- Detection Task
 - Method: Backbone AP AP50 AP75
 - FRCNN: VGG-16 21.05 47.87 15.23
 - FPN: ResNet-50 28.10 54.93 23.30
 - SSD300: VGG-16 21.49 47.21 16.57
 - RetiNeDet: VGG-16 22.84 49.01 16.82
 - YOLOv3: DarkNet-53 25.67 50.64 21.79

Motivation

Data Collection & Annotations

Comparison to Previous Datasets

Challenges

(1) Imbalanced distribution

(2) Intra- & inter-class variance